MODULARITY OF COMPATIBLE FAMILY OF p-ADIC

ثبت نشده
چکیده

Proof. Now suppose that ρp is absolutely reducible and we want to show that for any other λ ∈ Spec(E), ρλ is also absolutely reducible. Note that there exists a finite extension K over Ep such that ρp is reducible. Then there is a vector e1 in the underline space V ′ = V ⊗Ep K such that G is stable over e1. Let χ1 be the character of G acts on e1, χ2 the character G acts on V ′/K · e1. Since χi is p-adic Hodge-Tate (i.e. potentially-semi-stable) character. Using Fontaine’s classification,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Modularity and Applications

In our seminar we have been working towards a modularity lifting theorem. Recall that such a theorem allows one (under suitable hypotheses) to deduce the modularity of a p-adic Galois representation from that of the corresponding mod p representation. This is a wonderful theorem, but it is not immediately apparent how it can be applied: when does one know that the residual representation is mod...

متن کامل

Proving modularity for a given elliptic curve over an imaginary quadratic field

We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a family of compatible -adic representations. Our algorithm is based on Faltings-Serre’s method to pr...

متن کامل

p-adic Modular Forms: An Introduction

Serre in the 1970s was the first to formalize such a question on the way to constructing p-adic L-functions, by way of developing the notion of a p-adic modular form to be the p-adic limit of some compatible family of q-expansions of classical modular forms. Katz came along fairly soon afterwards and generalized the theory to a much more geometric context, and showed that Serre’s p-adic forms e...

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

Expansions of Modular Forms and Their Interpolation Properties

We define a power series expansion of a holomorphic modular form f in the p-adic neighborhood of a CM point x of type K for a split good prime p. The modularity group can be either a classical conguence group or a group of norm 1 elements in an order of an indefinite quaternion algebra. The expansion coefficients are shown to be closely related to the classical Maass operators and give p-adic i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008